2020 Census Program Management Review

Modeling and Analysis for the Cost-Quality Trade-Off

Pat Cantwell
Decennial Directorate

April 8, 2015

Topics

Evaluating cost and quality

The Microsimulator

Evaluating Cost and Quality

Ideal

- Want a simple measure of cost and quality for entire operation
- Want to consider "downstream" effects

Pragmatic

- Not so simple; no one method
- Cost and quality are difficult to measure
- Must identify appropriate metrics

Measuring Quality

- What to measure, and level of aggregation:
 - Geographic: nation, state, others
 - Demographic: race, Hispanic origin, age groups
- How to measure: sums of errors, absolute errors, weighted errors, . . .
- Standard of comparison, what to use as a baseline

Measuring Cost

- Compatible with Census Bureau's cost model, cost estimates
- Rough measures
 - For example, NRFU: workload, weighted; number of visits
- Combining across operations, common measures
 - Dollars
 - Other measures for cost model, e.g., productivity

Evaluating Cost and Quality, Summary

Determining appropriate metrics:

- Narrowing the list
- Which ones answer the proper questions?
- Which ones can we obtain accurately?

Two approaches to evaluating cost and quality:

- Analyze components one at a time
- Analyze from beginning to end

The Microsimulator

What is a Microsimulator?

- "Simulator": Computer program that runs scenarios or options as specified, while introducing realistic randomness
- "Micro": Starts at level of address, housing unit, person
- Allows us to run through scenarios many times, to see a distribution of possible results
- Input: Statistical models, data
- Output: Data, results, aggregates
 - Quality metrics: quality of census response, of census count
 - Cost measures: workload, visits; miles driven, productivity

Primary Purpose of the Microsimulator

- Provides information on the trade-off between cost and quality; use it as we shape the design decision, the operational plan for the 2020 Census
- Replaces our prior efforts on life cycle analysis, by allowing us to:
 - combine various activities into options
 - evaluate the trade-offs

Benefits of a Microsimulator

Enables us to . . .

 Simulate individual actions or decisions, then track the result through a series of actions

Simulating a Series of Actions

Simulating a Series of Actions (cont.)

Benefits of a Microsimulator

Enables us to . . .

- Simulate individual actions or decisions, then track the result through a series of actions
- Combine a string of activities into one complete "design option" or scenario

Example of Activities

Address Canvassing

- Option 1: canvass in field 100%
- Option 2: canvass in field 40%
- Option 3: canvass in field 20%

Self-Response

- Option 1: internet, mail, non-ID <u>not</u> allowed
- Option 2: internet, mail, non-ID allowed

Use of Administrative Records

- Option 1: remove vacants (and deletes) (VACANTS ONLY)
- Option 2: remove vacants, use Ad Recs after 1 NRFU visit (HYBRID)
- Option 3: remove vacants, use Ad Recs for all nonrespondents (FULL)

Building a Design Option or Scenario

Benefits of a Microsimulator

Enables us to . . .

- Simulate individual actions or decisions, then track the result through a series of actions
- Combine a string of activities into one complete "design option" or scenario
- Compare two or more scenarios

Analyzing Components One at a Time: Use of Ad Recs

Analyzing from Beginning to End

Benefits of a Microsimulator

Enables us to . . .

- Simulate individual actions or decisions, then track the result through a series of actions
- Combine a string of activities into one complete "design option" or scenario
- Compare two or more scenarios
- Observe trade-off between, say, cost and quality
- Capture randomness at housing-unit level; see how this produces a range of potential aggregate results

Comparing Cost and Quality

(each dot represents an iteration of the simulation)

Scatter Plot

Limitations of a Microsimulator

- Results are only as good as the models and input data
- Results rely on validity of assumptions
 - variation, randomness introduced
 - relationships between activities
- Developing, testing, and programming the underlying models:
 each is time intensive
- Computing time to run the simulation (many iterations) can be quite long

Benefits of This Microsimulator

- 1. Specifying and building scenarios graphically
- 2. Changing input parameters
- 3. Visually exploring output data

Number_of_FW_Attempts

1. Building Scenarios Graphically

- Generate logic diagrams, graphically specify scenarios
- Manipulate the graph; underlying Python code is generated automatically
 - simpler to build and change
 - increases coding accuracy

2. Changing Input Parameters

- For each unit (e.g., address), models produce, say,
 Pr{ unit responds via internet },
 Pr{ unit has "good" administrative records }, etc.
- Easy to change input parameter to, say, Pr{ ... } + Δ
 - for all units
 - for a specified subset of units
- Allows us to easily compare results under differing inputs

3. Exploring the Output Data

Easy to explore results visually; change domains, metrics

- Aggregates: nation, states, etc.
- Demographic or other domains
 - race or origin of householder
 - used vs. didn't use admin records
- Cost metric
 - number of NRFU cases
 - total number of NRFU visits

Number of FW Attempts

Current State of Microsimulator

- Developed two major activities:
 - self-response options
 - use (or not) of administrative records
- Currently developing models and gathering data for address canvassing options
- Simulation programmed in two languages (Python and SAS), for verification and risk mitigation

Broader Application of Microsimulator

- FY15: Produce trade-off data for design decision, operational plan for the 2020 Census
- Beyond FY15: Refine models; add other census operations to the sequence; evaluate options
- Eventually: Share software with other parts of the Census Bureau; encourage adoption of simulation techniques and use of statistical models

Questions

census.2020.program.management.review@census.gov

Building Scenarios Graphically (cont.)

Building Scenarios Graphically (cont.)

Combining Activities

- Start with options for several activities; for example,
 - address canvassing
 - self-response
 - use of administrative records (or not)
- Select one option for each activity
- Combine the individual options into one "design option" or "scenario"

Range of Resulting Values, Randomness

- The simulation produces "point clouds" showing the range of possible outcomes
- Which scenario works better on average?
- But how much uncertainty do Scenarios A, B incur?

